
Dylan Skinner - Brigham Young University - 25 February 2023

Using Deep Reinforcement Learning
To Generate Slice Surfaces from
Knots in Braid Notation
BYU Student Research Conference

Fancy way of saying I used deep learning to try and find a specific invariant of a knot.

What is Reinforcement Learning?
Introduction

What is Reinforcement Learning?
Introduction

• Agent is placed in an environment

What is Reinforcement Learning?
Introduction

• Agent is placed in an environment

• Agent interacts with the environment through a set of actions

What is Reinforcement Learning?
Introduction

• Agent is placed in an environment

• Agent interacts with the environment through a set of actions

• Agent chooses its actions to maximize a reward (goal)

Environment

Agent

Environment

Agent

State st

Environment

Agent

State st Action at

- The action changes the state.

Environment

Agent

State st Action at
Reward rt

Environment

Agent

State st Action at
Reward rt

Next state st+1

The way the agent decides which action to take is influenced by the algorithm the agent is using to evaluate the world it lives in. The algorithm that we used is Proximal
Policy Optimization (PPO).

Proximal Policy Optimization (PPO)
Introduction

Proximal Policy Optimization (PPO)
Introduction

• Algorithm developed by OpenAI in 2017

Proximal Policy Optimization (PPO)
Introduction

• Algorithm developed by OpenAI in 2017

• Seeks a balance between ease of implementation, sample complexity, and
ease of tuning

Proximal Policy Optimization (PPO)
Introduction

• Algorithm developed by OpenAI in 2017

• Seeks a balance between ease of implementation, sample complexity, and
ease of tuning

• Accomplished by computing update at each step to minimize cost function
and deviate only slightly from current policy

Proximal Policy Optimization (PPO)
Introduction

• Algorithm developed by OpenAI in 2017

• Seeks a balance between ease of implementation, sample complexity, and
ease of tuning

• Accomplished by computing update at each step to minimize cost function
and deviate only slightly from current policy

• In order for this to work, the algorithm uses two separate policy networks

Proximal Policy Optimization (PPO)
Visualized

Proximal Policy Optimization (PPO)
Visualized

Proximal Policy Optimization (PPO)
Visualized

Proximal Policy Optimization (PPO)
Visualized

Proximal Policy Optimization (PPO)
Visualized

Proximal Policy Optimization (PPO)
Visualized

Our Project
Knots

• Think of knots as a string that cannot be untied

Our Project
Knots

• Think of knots as a string that cannot be untied

Our Project
Knots

• Think of knots as a string that cannot be untied

Our Project
Seifert Surfaces

- Trying to find a surface that has the least number of holes in it (because it is easy to find one with a large number)

- To find a Seifert surface, simply take the knot, draw a surface connecting the lines, then count the number of holes you see (pretty over simplified).

Our Project
Seifert Surfaces

• Trying to find minimal genus slice surfaces

Our Project
Seifert Surfaces

• Trying to find minimal genus slice surfaces

• Seifert surfaces are orientable surfaces bounded by the knot

Our Project
Seifert Surfaces

• Trying to find minimal genus slice surfaces

• Seifert surfaces are orientable surfaces bounded by the knot

Our Project
Seifert Surfaces

• Trying to find minimal genus slice surfaces

• Seifert surfaces are orientable surfaces bounded by the knot

Our Project
Seifert Surfaces

- Some important things to know: In S^3, the unknown is the only thing that bounds a disk (has genus 0).

Our Project
Seifert Surfaces

• The unknot is the only knot that bounds a disk in S3

Our Project
Seifert Surfaces

• The unknot is the only knot that bounds a disk in S3

Our Project
Seifert Surfaces

• The unknot is the only knot that bounds a disk in

• The trefoil and figure-eight knots both bound a punctured torus

S3

- Two knots that have genus 1 are the trefoil and the figure-eight.

- So if you were to build a surface for each of these, the unknot would just look like a flat surface with no holes, and the trefoil and figure-eight knot would have one hole

each.

Our Project
Seifert Surfaces

• The unknot is the only knot that bounds a disk in

• The trefoil and figure-eight knots both bound a punctured torus

S3

Our Project
Seifert Surfaces

• The unknot is the only knot that bounds a disk in

• The trefoil and figure-eight knots both bound a punctured torus

S3

Our Project
Seifert Surfaces

• knot also bounds a punctured torus in 61

S3

6^1 knot has genus 1 in 3D. So when you build it, the least number of holes you can get it to have is 1.

Our Project
Seifert Surfaces

• knot also bounds a punctured torus in 61

S3

Our Project
Seifert Surfaces

• knot also bounds a punctured torus in

• Can we do better if we add an extra
dimension?

61

S3

What if we move this into the 4th dimension. Can we get better results?

- In fact we can! The 4D genus of the 6^1 knot is 0!

Our Project
Slice Surfaces

• Think of the knot on the surface of a ball of
dimension 4

S3

- The knot sitting on the surface of the 4-ball looks just like the 3D surface I showed at the beginning of my slides.

- The dark gray part slips into the 4th dimension and allows for the knot to exist there.

- But how can we look at 4-dimensional things? The answer is level sets!

Our Project
Slice Surfaces

• Think of the knot on the surface of a ball of
dimension 4

S3

S3 = @B4

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

- Take cuts of our 4-dimensional slice surface at various points.

- You can see at the third level set that something has happened; maybe a saddle point has been added.

- In the fourth level set, it looks like another saddle point has been added.

- 5th level set has something disappear and a saddle point is added again (to close the hole that was created).

- Final level set shows that surface has ended.

- Of course you will make more level sets than this, but this works.

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

• One way we can look at slice
surfaces is level sets

Our Project
Slice Surfaces

Our Project
Slice Surfaces

• Start with a strand

Our Project
Slice Surfaces

• Start with a strand

• Add some other strands

Our Project
Slice Surfaces

• Start with a strand

• Add some other strands

• Move the strands around
(according to a set of moves)

Our Project
Braids

Our Project
Braids

• Every knot or link can be represented in
braid form

Our Project
Braids

• Every knot or link can be represented in
braid form

• A braid is simply a set of strings attached
to a horizontal bar at the top and the bottom

n

Our Project
Braids

• Every knot or link can be represented in
braid form

• A braid is simply a set of strings attached
to a horizontal bar at the top and the bottom

n

• If you cut a slice surface at one point, you
can attach it to two bars to make a braid

Our Project
Braids

Our Project
Braids

• We represent braids through braid words

Our Project
Braids

• We represent braids through braid words

• If the th strand crosses over the th strand,
represent as

n n + 1
σn

Our Project
Braids

• We represent braids through braid words

• If the th strand crosses over the th strand,
represent as

n n + 1
σn

• If the th strand crosses under the th strand,
represent as

n n + 1
σ−1

n

Our Project
Braids

• We represent braids through braid words

• If the th strand crosses over the th strand,
represent as

• If the th strand crosses under the th strand,
represent as

• Braid word:

n n + 1
σn

n n + 1
σ−1

n

σ1σ−1
2 σ1

- When constructing the braid word, take the sigma notation from top to bottom, and write it like that. So any reordering of the braid word would be incorrect.

- For our reinforcement learning algorithm, we represented braids by their braid word, and plugged them into our environment to be looked at.

Our Project
Actions and Rewards

- We have several moves that our agent can use. The first one is to remove a crossing.

- The next set of moves (1-10) simply change the way the braid is presented. So that could be move the cursor, move a string. Essentially anything that does not actually

change the representation of the braid.

- Moves 11-12 add crossings (either over or under a strand)

- These are only negative rewards, so let’s talk about some positives.

Our Project
Actions and Rewards

• Move 0: Remove a crossing

Our Project
Actions and Rewards

• Move 0: Remove a crossing • Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Reward: -1 These are nonsense
word

- We have several moves that our agent can use. The first one is to remove a crossing.

- The next set of moves (1-10) simply change the way the braid is presented. So that could be move the cursor, move a string. Essentially anything that does not actually

change the representation of the braid.

- Moves 11-12 add crossings (either over or under a strand)

- These are only negative rewards, so let’s talk about some positives.

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Reward: -1 These are nonsense
word

• Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Reward: -1 These are nonsense
word

• Reward: -1

• Reward: 0 These are nonsense
word

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Reward: -1

• Reward: 0 These are nonsense
words

- We have several moves that our agent can use. The first one is to remove a crossing.

- The next set of moves (1-10) simply change the way the braid is presented. So that could be move the cursor, move a string. Essentially anything that does not actually

change the representation of the braid.

- Moves 11-12 add crossings (either over or under a strand)

- These are only negative rewards, so let’s talk about some positives.

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: 0 These are nonsense
words

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Inaction Penalty (Encourage our
agent to find the answer as quick
as possible)

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

- We have several moves that our agent can use. The first one is to remove a crossing.

- The next set of moves (1-10) simply change the way the braid is presented. So that could be move the cursor, move a string. Essentially anything that does not actually

change the representation of the braid.

- Moves 11-12 add crossings (either over or under a strand)

- These are only negative rewards, so let’s talk about some positives.

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Inaction Penalty (Encourage our
agent to find the answer as quick
as possible)

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Inaction Penalty (Encourage our
agent to find the answer as quick
as possible)

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: -1

• Reward: 0 These are nonsense
words

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Inaction Penalty (Encourage our
agent to find the answer as quick
as possible)

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

Our Project
Actions and Rewards

• Move 0: Remove a crossing

• Moves 1-10: Change the way the
braid is presented

• Moves 11-12: Add crossings

• Inaction Penalty (Encourage our
agent to find the answer as quick
as possible)

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: -1

• Reward: 0 These are nonsense
words

• Reward: -1

• Reward: -0.05 (Hyperparameter)

Our Project
Rewards for Results

- If the agent figures out how to solve the problem in less than the allotted steps, a reward of +100 is given.

- If the agent is unable to figure out how to solve the problem in the right number of steps, a penalty of -350 is given.

Our Project
Rewards for Results

• If a move produces an unknotted, unlinked component, that component is
removed and a reward of +1 is received

Our Project
Rewards for Results

• If a move produces an unknotted, unlinked component, that component is
removed and a reward of +1 is received

• If the agent builds a surface with the maximal Euler characteristic, reward of
+100 is given

Our Project
Rewards for Results

• If a move produces an unknotted, unlinked component, that component is
removed and a reward of +1 is received

• If the agent builds a surface with the maximal Euler characteristic, reward of
+100 is given

• If the agent fails to build such a surface, a penalty of -350 is given

Our Project
Results Knot41

Total blue training time: 15 hours 24 minutes

Total training time: 15 hours 24 minutes

Our Project
Results Knot41

Total pink training time: 5 minutes

Total training time: 15 hours 29 minutes

Our Project
Results Knot41

Total gray training time: 1 hour 42 minutes

Total training time: 17 hours 11 minutes

Our Project
Results Knot71

Total orange training time: 24 hours

Total training time (4_1 knot): 17 hours 11 minutes

Total training time (7_1 knot): 24 hours

Total training time (in general): 41 hours 11 minutes

Our Project
Results Knot72

Total dark blue training time: 33 hours 9 minutes

Total training time (4_1 knot): 17 hours 11 minutes

Total training time (7_1 knot): 24 hours

Total training time (7_2 knot): 33 hours 9 minutes

Total training time (in general): 74 hours 20 minutes

Our Project
Results Knot81

Total red training time: 6 hours

Total training time (4_1 knot): 17 hours 11 minutes

Total training time (7_1 knot): 24 hours

Total training time (7_2 knot): 33 hours 9 minutes

Total training time (8_1 knot): 6 hours

Total training time (in general): 80 hours 20 minutes

